

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous) Mithaghar Road, Mulund East, Mumbai-400081, India *College with Potential for Excellence*

Syllabus for B. Sc. First Year Program in BIOTECHNOLOGY Syllabus as per Choice Based Credit System (NEP-2020)

Board of Studies in Biotechnology V. G. Vaze College of Arts, Science and Commerce (Autonomous)

Submitted by Department of Biotechnology Vinayak Ganesh Vaze College of Arts, Science and Commerce (Autonomous) Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. E-mail: <u>vazecollege@gmail.com</u> Website :<u>www.vazecollege.net</u>

Course Code	Name of the Course		
	MAJOR:		
VBBT100	Biotechnology I: Introduction to Biotechnology		
VBBM101	Basic Microbiology: Microbial Technology		
VBPR102	Practicals of Basic Biotechnology & Basic Microbial techniques		
	OPEN ELECTIVES:		
VFDP122	Digital Skills & Problem Solving		
VFDC123	Digital Productivity & Career Development		
VFMS125	Mathematical & Statistical Techniques		
VFRF126	Regulatory Framework of Business		
VFIC127	Introduction to Computers		
VFLA128	Law and Automation I		
VFFM129	Financial Markets		
	VOCATIONAL & SKILL ENHANCEMENT COURSE		
VBBC104	Bioorganic Chemistry I		
VBPR105	Practicals of Bioorganic Chemistry I		
	ABILITY ENHANCEMENT COURSE		
VFEC132	Effective Communication Skills - I		
	VALUE EDUCATION COURSE		
VCI135	The Constitution of India. (Department of History)		
	INDIAN KNOWLEDGE SYSTEM		
VFHB144	History of Biotechnology.		
	CO-CURRICULAR COURSES		
VCA141	Community Engagement Activities		
VCE142	Cultural Activities		

VNS143	National Service Scheme (NSS)
VSA144	Sports Activities
VYG145	Yoga
VKB146	Rhythmic Narratives: History & Foundation of Kathak and Bollywood
	Dance
VSS147	Sangeet Sadhana

FYBSC Biotechnology SEMESTER II

Course Code	Name of the Course				
	MAJOR:				
VBBT150	Biotechnology II: Genetics and Molecular Biology				
VBLS151	Basic Life Science: Biodiversity and Cell Biology				
VBPR152	Practicals of Biotechnology II & Basic Life Science				
	MINOR:				
VBAPI153	ATC, PTC & Immunology				
	OPEN ELECTIVES:				
VFDV172	Data Visualization Techniques				
VFBC173	Basics of Cybersecurity				
VFRF175	Regulatory Framework of Business				
VFVC176	Visual Communication				
VFMS177	Mathematical & Statistical Techniques				
VFBA178	Basics of Accountancy I				
VFLA179	Law and Automation II				
VFIF180 Indian Financial System					
	VOCATIONAL & SKILL ENHANCEMENT COURSE				
VBBC155	Bioorganic Chemistry II				
VBPR156	Practicals of Bioorganic Chemistry II				
	ABILITY ENHANCEMENT COURSE				
VFEC183	Effective Communication Skills - II				
	VALUE EDUCATION COURSE				
VHR185	Human Rights (Department of History)				
	CO-CURRICULAR COURSES				
VCA141	Community Engagement Activities				
VCE142	Cultural Activities				
VNS143	National Service Scheme (NSS)				
VSA144	Sports Activities				
VYG145	Yoga				
VKB146	Rhythmic Narratives: History & Foundation of Kathak and Bollywood				
	Dance				
VSS147	Sangeet Sadhana				

SEMESTER I

	chnology)	Semest	er – I	
Course Name: B	iotechnology I: Introduction to Bi	otechnolog	у	
Periods per wee	Periods per week (1 Period is 60 minutes)		2	
Credits			2	
			Hours Marks	
Evaluation	on Theory Examination 2 60		60	
System	Internal		40	
-	es udents with various fields of Biote e knowledge of food technology ar			
I Scope and Introduction to Biotechnology	Definition of Biotechnology. Branches of Biotechnology- Plant, Animal, Marine, Agriculture, Healthcare, Industrial, Pharmaceutical and Environmental Biotechnology.10 LEC			10 LEC
	GM Food: GM Papaya, GM Tomato, Golden Rice.10 LMolecular Pharming, Plant based vaccines.10 LFungal and Insect Resistant Plants - BT Cotton and BTD			
II Applications Biotechnology	Fungal and Insect Resistant Plan Brinjal. Biotechnological applications in	d vaccines. nts - BT Co n Crop and	tton and BT	10 LEC

Course Outcome		
Learners should be able to		
CO1 Understand the scope of Biotechnology.		
CO2 Understand various applications of Biotechnology.		

Title			Books and References:				
The	Author/s	Publisher					
Textbook of Biotechnology	R.C.Dubey	S.Chand					
Biotechnology	H.K.Das	Himalaya					
Advances in Biotechnology	S.N. Jogdand	Himalaya					
-	Biotechnology	Biotechnology H.K.Das	Biotechnology H.K.Das Himalaya				

B. Sc (Biotechnology)			Semester – I		
Course Nar	ne: Basi	c Microbiology: Microbi	al Technology		
Periods per	week (1	Period is 60 minutes)	2		
Credits			2		
			Hours	N	Iarks
Evaluation		Theory Examination	2		60
System					
		Internal			40
Course Ob	jectives			1	
·		with various aspects of Microsects of Microsects of Microbial diversity and	robiology and their application	ons.	
Unit	Kilowiedz	Deta			Lectures
Unit I			ty: Archaebacteria, Eubact Fungi, Eumycota Bact	·	10 LEC
	Classifi	ication, Types, Morph	nology (Size, Shape	and	
	Arrangement) Modes of cell division Ultrastructure of				
	Prokaryotic Cell: Concept of Cell Shape and Size, Detail				
	Structure of Slime Layer, Capsule, Flagella, Pilli, Cell Wall				
	(Gram Positive and Negative), Cell Membrane, Protoplast and				
	Spheroplast, Cytoplasm and Genetic Material Storage Bodies and Spores				
	-		: Direct and Indirect Met	thods:	
Unit II		1	reed's count, Petroff -Ha eter. Viable count – Spread		10 LEC
		Pour plate technique.	-	-	
		1 1	neter techniques Growth of	curve:	
	Phases	of growth, generation tim	e, growth rate Sterilizatio	n and	
		• •	ation of media and glass v		
	Types and Applications- Dry Heat, Steam under pressure, Gases,				
	Radiati	on and Filtration; Chemi	cal Agents and their Mo	de of	
	Action- Aldehydes, Halogens, Phenol, Alcohol, and Detergents;				
	Ideal D	isinfectant Properties, and	Evaluation of Disinfectan	t	
Unit III		's Laws of Heredity Mono inance and Segregation. E	2 1		10 LEC
	of Independent Assortment. Application of Mendel's Principles				

Punnett Square.
Mendel's Principle in Human Genetics.
Incomplete Dominance and Co-dominance.
Multiple Alleles. Allelic series. Variations among the effect
of the Mutation.
Genotype and Phenotype. Environmental effect on the
expression of the Human Genes. Gene In Epistasis.

Course	Learners should be able to	
Outcomes		
CO1	Understand the scope of Microbiology.	
CO2	Understand various aspects of Microbiology.	

B. Sc. (B	iotechnology)	Semester – I		
Course Nan	Course Name: Basic Biotechnology & Basic Microbial techniques Practical			
Periods per week (1 Period is 120 minutes)		2		
Credits		2		
		Hours	Marks	
Evaluation	Practical Examination	4	100	
System	Internal			

List of Practicals Basic Biotechnology

- 1. Assignment- Study of any branch of biotechnology and its applications
- 2. Microbial examination of food and detection of Pathogenic Bacteria from Food Samples
- 3. Microscopic determination of Microbial flora from Yoghurt and Lactic Acid Determination
- 4. Analysis of Milk- Methylene Blue, Resazurin Test, Phosphatase Test
- 5. Extraction of Caesin from Milk
- 6. Meat Tenderization using Papain
- 7. Fermentative production of Alcohol.
- 8. Determination of Alcohol content.
- 9. Isolation and purification of DNA (genomic).

List of Practicals -Basic Microbial techniques

- 1. Monochrome Staining, Differential Staining, Gram Staining, Acid Fast Staining and Romonowsky Staining
- 2. Sterilization of Laboratory Glassware and Media using Autoclave
- 3. Preparation of Media- Nutrient broth and Agar, MacConkey Agar, Saborauds Agar
- 4. Isolation of Organisms: T-streak, Polygon method
- 5. Colony Characteristics of Microorganisms,
- 6. Aseptic transfer
- 7. Enumeration by Breed's count
- 8. Growth Curve of *E.coli*
- 9. Problems in Mendelian Genetics

B. Sc. (Biotechnology)		Semester – I		
Course Name: Bioorganic Chemistry I				
Periods per week (1 Period is 60 minutes)		2		
Credits	Credits		2	
		Hours	Marks	
Evaluation	Theory Examination	2	60	
System	Internal		40	

To aquaint students with various aspects of Bioorganic Chemistry. To impart the knowledge of biomolecules.

Unit	Details	Lectures
Ι	Carbohydrates Structure, Function, Classification. Characteristic	
	Reactions, Physical and Chemical Properties, D & L-Glyceraldehyde,	10
	Structure of Monosaccharide, Disaccharides, and Polysaccharides(3L)	
	Isomers of Monosaccharides, Mutarotation Concept of Epimers,	
	anomers.(3L) Chemical/Physical Properties of Carbohydrate Chemical	
	Reactions for Detection of Mono-, Di- and Polysaccharides (3L)	
	Structural and functional polysaccharides-examples (2L)	
	Glycoproteins and proteoglycans-examples(1L)	
II	Nucleic Acids: Structure of Purine and Pyrimidine Bases, Structure of	
	Nucleosides, Nucleotides and Polynucleotides DNA and RNA:	
	Structure, types, and function of DNA and RNA (4L) Properties of	10
	DNA and RNA - Hydrogen Bonding between Nitrogenous Bases in	
	DNA, Differences between DNA and RNA, cDNA, Denaturation,	
	Annealing, Tm, Hypo & hyperchromic effect. Chemical synthesis of	
	DNA and DNA hybridization (2L)	

III	Lipids: Classification of Lipids, Concept of Storage Lipids and		
	Structural Lipids Properties of Saturated, Unsaturated Fatty Acids,		
	Rancidity, and Hydrogenation of Oils (4L) Triacylglycerol,	10	
	Phospholipids, Sphingolipids, Sterols: Basic structure, function, and		
	examples (3L) Lipoproteins- Structure and Function (1L) Use of Lipids		
	as cofactors, signals and pigments (2L) Methods involved in the		
	Extraction, separation and identification of cellular lipids (2L)		

Course Outcomes	Learners should be able to
CO1	Understand the structure and function of various biomolecules.
CO2	Understand various aspects Bioorganic Chemistry.

B. Sc. (Bi	otechnology)	Semester – I	
Course Nan	ne: Bioorganic Chemistry I		
Periods per	week (1 Period is 120 minutes)		2
Credits		2	
		Hours	Marks
Evaluation	Practical Examination	4	100
System	Internal		
List of Prac	ticals Bioorganic Chemistry		
2 3 4 5 6 7 8 9	Estimation of DNA by DPA method.Estimation of RNA by Orcinol metho	tes & amin A method. od and Low d. Value of C saponifica	o acids. ry method Dil or Fat. tion reaction between

B. Sc (Biotechr	ology)	Semester – I		
Course Name: Histe	ory of Biotechnology			
Periods per week (1	Period is 60 minutes)	2		
Credits	Credits 2			
		Hours	Marks	
Evaluation System	Theory Examination	02	60	
	Internal		40	

To aquaint students with historical aspects of Biotechnology. To impart the knowledge of evolution and diversification of Biotechnology.

Unit	Details	Lectures
I	Advent of Biotechnology, Traditional and Modern Biotechnology- Tracing biotechnology through ages, Biotechnology in Healthcare, Public perception of Biotechnology,	10
Π	Ethics in Biotechnology. Biotechnological Research in India, Biotechnology Institutions in India (Public and Private sector), Consumption of Biotech products, Biotech policy initiatives, Biotechnology in context of developing World	10
III	Biotech success stories in India, Biotechnology in India- Bio-business (Biotechnology market) in India, Ethical issues in Biotechnology in India.	10

Course	Learners should be able to
Outcomes	
CO1	Understand the historical aspects of Biotechnology.
CO2	Understand evolution of Biotechnology.

Books and References:				
Sr. No.	Title	Author/s	Publisher	Edition
1.	Textbook of Biotechnology	R.C.Dubey	S.Chand	4 th
2.	Biotechnology	H.K.Das	Himalaya	3 rd
3	Advances in Biotechnology	S.N. Jogdand	Himalaya	6 th

SEMESTER II

B. Sc. (Biotech	nology)	Semester – II		
Course Name: Biote	echnology II: Genetics and Mole	cular Biology		
Periods per week (1	Period is 60 minutes)	2		
Credits		2		
		Hours	Marks	
Evaluation	Theory Examination	2	60	
System	Internal		40	

To aquaint students with various aspects of Biotechnology.

To impart the knowledge of population genetics and basic molecular processes in biology.

Unit	Details	Lectures		
I	 DNA Replication in Prokaryotes and Eukaryotes-Semi-conservative DNA replication, DNA Polymerases and its role, E. coli Chromosome. Replication, Bidirectional Replication of Circular DNA molecules, Rolling Circle Replication, DNA Replication in Eukaryotes, End replication problem, Action of Telomerase Recombinant DNA technology: Genetic Engineering in E.coli, Cloning Vector - Plasmid, Enzymes - DNA Polymerases, Restriction Endonucleases, Ligases, Reverse Transcriptases, Nucleases, Terminal Transferases, Phosphatases 	10		
II	Mutations: Definition and Types of Mutations, Mutagens (Examples of Physical, Chemical and Biological Mutagens) Types of Point Mutations, DNA repair – Photo reversal, Base Excision Repair, Nucleotide Excision Repair, Mismatch Repair SOS Repair			
ш	Genetic Structure of Populations – Genotypic Frequencies and AllelicFrequencies,Hardy- Weinberg Law and its assumptionsGenetic Variations in Populations- Measuring Genetic Variation at ProteinLevel and measuring Genetic Variations at DNA levelNatural Selection. Genetic Drift SpeciationRole of Population Genetics in Conservation Biology	10		

Course Outcomes	Learners should be able to
CO1	Understand basics of population genetics.
CO2	Understand genetics of bacteria and bacteriophages.
CO3	Understand DNA replication in prokaryotes and eukaryotes.
CO4	Understand basics of recombinant DNA technology and mutagenesis.

Book

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	iGenetics-A Molecular Approach	Peter Russell	Pearson	3rd	2005

B. Sc. (Biotechn	ology)	Semester – II		
Course Name: Basic	Life Science: Biodiversi	ty and Cell Biology		
Periods per week (1 Period is 60 minutes)			2	
Credits		2		
		Hours	Marks	
Evaluation System	Theory Examination	2	60	
	Internal		40	

To aquaint students with various aspects of Life Sciences. To impart the knowledge of biodiversity, ultrastructure of eukaryotic cell, plant physiology and animal physiology

Unit	Details	Lectures
Ι	 Origin of Life, Chemical and BiologicalEvolution, Origin of Eukaryotic Cell. Concept of Biodiversity, Taxonomical, Ecological and Genetic Diversity & its significance. Introduction to Plant Diversity: Algae, Fungi, Bryophyta, Pteridophyta, 	
	 Gymnosperms and Angiosperms (with one example each) Introduction to Animal Diversity: Non-Chordates and Chordates (with at least one representative example.) Introduction to Microbial Diversity: Archaebacteria, Eubacteria, Blue-greenAlgae, 	10
П	Actinomycetes, Eumycota- Habitats, Examples and Applications.	
11	Ultrastructure of Eukaryotic Cell: Plasma membrane, Cytoplasmic Matrix, Microfilaments, Intermediate Filaments, and Microtubules Organelles of the Biosynthetic- Endoplasmic Reticulum & Golgi Apparatus. Lysosome, Endocytosis, Phagocytosis, Autophagy, Proteasome Eukaryotic Ribosomes, Mitochondria and Chloroplasts Nucleus –Nuclear Structure, Nucleolus External Cell Coverings: Cilia and Flagella Comparison of Prokaryotic and Eukaryotic Cells	10
III	Plant Physiology: Photosynthesis, Intracellular Organization of Photosynthetic System, Photosynthetic Pigments, Fundamental Reactions of Photosynthesis. Role of Light. Hills Reaction and its Significance, Light Reactions, Cyclic and Non-	10

Cyclic Photo Induced Electron Flow, Energetics of Photosynthesis,
Photorespiration, Dark Phase of Photosynthesis, Calvin Cycle, C-4 and CAM
pathway.
Animal Physiology: Physiology of Digestion, Movement of Food and Absorption,
Secretary functions of Alimentary Canal, Digestion and Absorption, assimilation
in Gut of Mammals.
Anatomy of Mammalian Kidney, Structure of Nephron, Physiology of Urine
Formation and Role of Kidney in Excretion and Osmoregulation
Physiology of Respiration, Mechanism of Respiration, Principles of Gaseous
Exchange in the Blood and Body Fluids
Blood and Circulation: Blood Composition, Structure and Function of its
Constituents, Blood Coagulation and Anti- Coagulants, Haemoglobin and its
Polymorphism Regulation of the Circulation
Mechanism and working of Heart in Human.

Course	Learners should be able to
Outcomes	
CO1	Understand biodiversity.
CO2	Understand ultrastructure of eukaryotic cell.
CO3	Understand plant physiology.
CO4	Understand animal physiology.

B. Sc. (Biotechnology)		Semester – II	
Course Nar	ne: Practicals of Biotechnology II &	Basic Life	e Science
Periods per week (1 Period is 120 minutes)		2	
Credits		2	
		Hours	Marks
Evaluation	Practical Examination	4	100
System	Internal		

List of Practicals:

- 1. Study of Hill's reaction.
- 2. Colorimetric study of Absorption Spectrum of Photosynthetic Pigments.
- 3. Movement of Food in Paramoecium- Demonstration.
- 4. Analysis of Urine.
- 5. Study of Mammalian Blood-Differential count.
- 6. Blood count using Haemocytometer.
- 7. Estimation of Haemoglobin in Mammalian Blood.
- 8. Study of Human Blood Groups.
- 9. Study of Mammalian Kidney and Heart.
- 10. Problems in Mandelian Genetics
- 11. Study of Mitosis and Meiosis.
- 12. Study of Karyotypes Normal Male and Normal Female.
- 13. Study of Interactions Commensalism, Mutualism, Predation and Antibiosis, Parasitism.
- 14. Staining of Plant and Animal Tissues using Single and Double Staining Techniques
- 15. Study of Plant, Animal and Microbial Groups with at least one examples from each
- 16. Study of Photomicrographs of Cell Organelles

B. Sc (Biotechnology)		Semester – II	Semester – II	
Course Name: ATC, P	ГС & Immunology			
Periods per week (1 Period is 60 minutes)			2	
Credits		2		
		Hours	Marks	
Evaluation System	Theory Examination	2	60	
	Internal		40	

To aquaint students with various aspects of applications of Biotechnology. To impart the knowledge of animal tissue culture, plant tissue culture, and immunology.

Course	Learners should be able to	
Outcomes		
CO1	Gain an overview of immunology.	
CO2	Understand basic plant tissue culture techniques.	
CO3	Understand basic animal tissue culture techniques.	

Unit	Details	Lectures
Ι	Overview of Immune Systems, Cell and Organs involved, T and B cells.	
	Innate Immunity, Acquired Immunity, Local and Herd Immunity, Humoral and	
	Cellular Immunity-Factors Influencing and Mechanisms of each.	
	Antigens and Antibodies: Types of Antigens, General Properties of Antigens,	
	Haptens and Superantigens Discovery and Structure of Antibodies (Framework	
	region)Classes of Immunoglobulins, Antigenic Determinants. Antigen-Antibody	10
	Interactions	
	Monoclonal Antibodies,	
	Vaccines (Live, Killed) and Toxoid.	
	Production of -Insulin; recombinant vaccine for Hepatitis B virus. Molecular	
	farming, Edible vaccines and their advantages	
II	Basics of Plant Tissue Culture:	
	Cell Theory, Cellular Totipotency, Concept of Cell Culture, Design of PTC lab	10
	with equipment, Plant tissue culture media and phytohormones. Applications of	

	PTC - Clonal and micro-propagation, callus culture, development of synthetic seeds and GMO	
III	Basics of Animal Tissue Culture:	
	Introduction to Animal Cell Culture; Terminologies - Primary cell culture,	
	Passaging, Confluency, Cell line, Organ culture; Equipments - CO2 Incubator,	
	Laminar-Air flow, Inverted microscope, Medium filtration devices, Cell counters,	10
	liquid-nitrogen-storage tanks; Design of ATC laboratory; Applications of ATC -	
	Cell lines for vaccine production, therapeutic proteins, pharmaceutical agents, and	
	anticancer agents	

Course	Learners should be able to	
Outcomes		
CO1	Gain an overview of immunology.	
CO2	Understand basic plant tissue culture techniques.	
CO3	Understand basic animal tissue culture techniques.	

B. Sc (Biotechnology)		Semester – II			
Course Na	Course Name: Bioorganic Chemistry II				
Periods per week (1 Period is 60 minutes)		2			
Credits		2			
		Hours	Marks		
Evaluation	Theory Examination	2	60		
System	Internal		40		

To aquaint students with various aspects of Bioorganic Chemistry. To impart the knowledge of buffers, Proteins and basics of enzymology.

Unit	Details	Lectures
	Water, Solutions and Buffers Chemistry of Water: Properties of Water, Interaction of Water with Solutes (Polar, Non-Polar, Charged), Non-Polar Compounds in Water – Change in its Structure and the Hydrophobic Effect, Role of Water in Biomolecular Structure and Function, Water as a Medium for Life (2L) Solutions: Normality, Molarity, Molality, Mole fraction, Mole concept, Solubility, Weight ratio, Volume ratio, Weight to Volume ratio, ppb, ppm, millimoles, milliequivalents (Numericals expected). (3L) Primary and Secondary Standards: Preparation of Standard Solutions, Principle of Volumetric Analysis. (1L) Acids and Bases: Lowry-Bronsted and Lewis Concepts. Strong and Weak Acids and Bases - Ionic Product of Water - pH, pKa, pKb. Hydrolysis of Salts. (3L) Buffer solutions: Concept of Buffers, Types of Buffers, Derivation of Henderson equation for Acidic and Basic buffers, Buffer action, Buffer capacity, pH of Buffer Solution. (3L)	10
Π	Proteins and amino acids Amino Acids: Classification, Preparation and Properties, (3L) Isoelectric Point, Titration Curve of Amino Acids, Concept of Isoelectric pH, Zwitter-ion, Structure of Peptides, Peptide Synthesis (3L) Proteins: Classification based on Structure and Functions,(2L) Primary Structure, N-terminal (Sanger and Edmans Method) and C-terminal Analysis (Enzyme) (2L) Reactions of Amino Acids, Sorenson's Titration, Ninhydrin Test, Denaturation of protein, Glycoproteins	10

III	Enzymes Definition, Classification, Nomenclature, Chemical (1L) Nature and		
	Properties of Enzymes, Co- Factors, Zymogens, Active Sites, Enzyme		
	Specificity (3L) Mechanism of Enzyme Action (1L) Effect of pH, Temperature 10		
	and Substrate Concentration on Enzyme Activity (2L) Enzyme Kinetics,		
	Michaelis - Menten Equation (2L) Types of Enzyme Inhibitions - Competitive,		
	Uncompetitive, Non-Competitive Allosteric, Modulators		

Course	Learners should be able to	
Outcomes		
CO1	Understand the chemistry of water and buffers.	
CO2	2 Understand structure and function of proteins.	
CO3	Understand basics of enzymology.	

B. Sc (Bi	otechnology)	Semester – II				
Course Name: Practicals of Bioorganic Chemistry II						
Periods per	week (1 Period is 120 minutes)	2				
Credits		2				
		Hours	Marks			
Evaluation	Practical Examination	2	100			
System	Internal					

List of Practical

- 1. Preparation of Standard (Molar, Molal and Normal solutions) and Buffer Solutions.
- 2. Determination of strength of HCl in commercial sample.
- 3. Determination of amount of NaHCO3 + Na2CO3 in the given solid mixture titrimetrcially.
- 4. Separation of amino acids by paper chromatography.
- 5. Estimation of Protein by Biuret method.
- 6. Estimation of Protein by Lowry method.
- 7. Meat Tenderization using Papain
- 8. Activity of Salivary Amylase on Starch
- 9. Qualitative Assay of Enzyme Amylase, Invertase, Urease, Lipase, Catalase and Dehydrogenase.
- 10. Enzyme Kinetics Vmax Km determination.
- 11. Study of the effect of pH, Temperature on activity of Enzyme.